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Abstract-The analysis of a material containing multiple interacting bridged cracks is the principal
objective of this paper. The traction-consistency equations in terms ofbridging tractions and pseudo
tractions are developed to enable the decomposition of a problem involving multiple bridged cracks
into a number of sub-problems, each involving only a single crack. Bridging law equations are
formulated so that the bridging tractions and pseudo-tractions appear as primary unknowns. The
current approach is capable of handling multiple interacting crack systems with a general form of
bridging laws, linear or nonlinear, isotropic or anisotropic. Both isotropic and anisotropic bridging
laws are investigated. It has been observed that the bridging law for a crack can significantly modify
the tip behavior of the crack itself, while its influence on neighboring cracks is relatively weak. The
influence of bridging anisotropy on crack-tip stress fields is found to be significantly modulated by
the loading condition, Bridging effects and interaction effects on stress amplification and retardation
are also examined, For nonlinear bridging, a case of fiber pull-out in metal/ceramic laminates is
studied to establish the critical ratio of fiber-to-matrix thickness that would avoid single-crack
extensions and transfer the deformation, instead, to multiple cracking. For multiple cracking
situations, the crack nucleation sites are also predicted.

1. INTRODUCTION

In recent years, intermetallics and ceramic matrix composites have been used ever increas
ingly for high-temperature applications. However, the presence of microdefects can cause
significant strength and modulus degradations of these materials. The growth and coales
cence of microdefects manifest themselves as macrodefects and cause eventual failure
of the component. In order to increase the fracture toughness of these relatively brittle
compounds, methods studied by a number of researchers rely on bridge toughening, trans
formation toughening, fiber reinforcements, and microcrack toughening. For example, the
fiber pull-out in unidirectional fiber-reinforced composites or fiber cross-over in randomly
fiber-reinforced composites can provide bridging tractions to a level sufficient to retard a
crack growth. For intermetallic aluminides, especially those of titanium, which have been
identified as potential candidates for near-term success in high-temperature applications,
the fracture toughness depends to a large extent on bridging mechanisms in the form of
ductile phase accommodation and blunting, shear ligament toughening, and twin tough
ening. A bridge toughening mechanism for ductile particles dispersed in a brittle matrix
was discussed by Sigl et al. (1988). The bridging was observed to be associated with particles
intercepted by the crack. Such particles, well bonded to the matrix, exhibit significant plastic
stretching in a zone of crack bridging, until they fail by a ductile mechanism. Important
for the effectiveness of bridge toughening is the fact that a growing crack is attracted to the
phase with the lower elastic modulus. As observed by Bao and Suo (1992), the bridging
mechanism provides a unified treatment for the cohesive forces that hold material together,
ranging from atomic bonding to fiber cross-over.

Many publications have been devoted to the modeling of bridged cracks. These may
be broadly classified as traction and dislocation formulations. In the traction formulation,
the crack opening displacements are obtained in terms of bridging tractions, which in turn
can be solved with a proper bridging law (Marshall et al., 1985; Marshall and Cox, 1987;
Rose, 1987; Budiansky et al., 1988; McCartney, 1987; Bao and Hui, 1990; and Cox and
Lo, 1992). The distribution-of-dislocation approach takes advantage of the widely used
crack modeling technique and solves the system in terms of crack opening gradients (Bao
and Suo, 1992; Hu et ai., 1993a). For bridged cracks, the traction approach is appealing,
since a bridging law usually implies a relationship between bridging tractions and crack
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opening displacements. However, this approach has been applied, so far, only to the analysis
of a single bridged crack. As was observed by a number of researchers (Shaw et al., 1993
and Beyerde et al., 1992), multiple cracking occurs in composite materials, such as metal/
ceramic laminates, and can be used as a mechanism for damage redistribution, consequently
enhancing the toughness of the brittle ceramics. Moreover, various bridging mechanisms
and their interactions with renucleated and distributed cracks will significantly influence
further damage development and determine the final macrofailure mode of the structure.
Accordingly, the analysis of a material containing multiple interacting bridged cracks is the
principal objective of this paper. In Section 2, a formulation capable of modeling general
multiple interacting bridged-crack systems is developed based on bridging tractions and
pseudo-tractions. Anisotropic bridging, inherent to multiple crack systems, is also discussed
in detail. Although superposition is used to form the basis of the analysis, the analysis can
incorporate the nonlinearity of the bridging law since the nonlinearity is treated through
the bridging law only. Section 3 focuses on the effects of bridging anisotropy and crack
interactions on the propagation of interacting cracks in the case of linear bridging. Section
4 examines a case of nonlinear bridging, i.e. the fiber pull-out in a metal/ceramic composite.
The critical ratio of fiber-to-matrix thickness is established that would avoid single-crack
extensions and transfer the deformation, instead, to multiple matrix cracking. The crack
nucleation sites are also predicted for the case of multiple matrix cracking. A summary of
results and a brief discussion of systems involving large-scale bridging and real-life com
ponents with microstructures are presented in Section 5.

2. MODELING OF INTERACTING BRIDGED-CRACK SYSTEMS

2.1. Problem statement
This section presents an approach to the analysis of a system containing multiple

interacting bridged cracks. As shown schematically in Fig. 1, it is assumed that M bridged

Fig. 1. Schematic diagram of an interacting bridged-crack system.
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cracks of arbitrary orientations are embedded in a matrix material with shear modulus G
and Poisson's ratio v. With respect to global Cartesian coordinates x and y, we consider a
local tangential-normal coordinate system with the origin at the center of the ith crack. The
normal direction and the tangential direction along the ith crack are denoted by n(i) and
t(i). The occupancy of the ith crack is denoted as - a(i) < t < a(i). Under certain applied
loading conditions, crack bridging occurs and (however sophisticated the mechanisms
involved) can be represented as a distribution of closing tractions on each individual crack
surface. Bridging tractions can be related to the corresponding crack opening displacements
through a bridging law,

P, = f,(u" un),

Pn = j"(u,, Un),

(I a)

(lb)

where P, and Pn are bridging tractions and u, and Un are crack opening displacements in the
tangential and normal directions, respectively. It should be noted that a specific form of
the bridging law can be obtained in light of the micromechanical mechanisms for a particular
bridging situation (Marshall et al., 1985; McCartney, 1987; Hutchinson and Jensen, 1990;
Needleman, 1987, 1990; and Tvergaard, 1990, 1992, for more details). As pointed out by
Bao and Suo (1992), it is the variation of a scalable quantity associated with the bridging
law, not the bridging law itself, that accounts for the richness in material behavior, ranging
from the scale of a few nanometers for atomic bonding to about a meter for cross-over
fibers.

Various bridging laws can be broadly classified into categories such as linear and
nonlinear bridging and isotropic and anisotropic bridging, among others. Isotropic bridging
is, by definition, independent of crack orientations and can be found in particulate
reinforced composites, fiber-reinforced composites with random fiber cross-over, and inter
metallics with second-phase agents. Anisotropic bridging becomes an important issue in the
analysis ofsystems involving multiple interacting cracks since the orientation dependence of
a bridging law is naturally brought to light due to the variation in crack orientations.
Anisotropic bridging can occur, for example, in a unidirectional fiber-reinforced composite
with pull-out fibers. Furthermore, the bridging law can assume different forms in each
individual crack, i.e. bridging can be crack-wise inhomogeneous.

2.2. Integral equations
Following a superposition technique proposed by Horii and Nemat-Nasser (1985), the

system is divided into as many sub-problems as there are cracks, each sub-problem con
taining a single crack in the infinitely extended matrix. A distribution ofunknown tractions,
s, and Sn, is placed on the corresponding crack surface in each sub-problem. The unknown
tractions, also called pseudo-tractions, will be determined in such a way that all the require
ments of the original interacting bridged-crack problem are satisfied. Based on this super
position observation, fundamental solutions for an infinite body containing a single crack,
subject to a pair of concentrated tangential loads and a pair of concentrated normal loads
of opposite direction on the crack surface, are required for the current analysis. The
fundamental solutions for these cases were obtained by Tada et al. (1985) in terms of
Westgaard complex potentials. The stress and displacement fields can be easily constructed
thereafter.

Let us now consider the effects of all cracks on the mth crack. For consistency, stress
fields associated with different cracks should be transformed to the local tangential-normal
coordinate system for the mth crack, (t(m) , n(m». Contributions of all M cracks to the stress
field at the presumed location of the mth crack are now represented by their corresponding
unknown distribution of pseudo-tractions. Summing the effects of all cracks on the mth
crack and imposing the traction conditions that are consistent with the original interacting
bridged-crack problem, we get:

$AS 31 :5-8
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Mfa'"
s~m)(t(m») - l~\ -aU) [K 1 \ (t(m), t(I»)S~') (t('») + Kdt(m), t(i»)s~)(t(l)] dt(i)

,*m

and

Mfa'"s}m)(t(m») - i~\ _aU) [K2\ (t(m), t(i))s~i) (t(i)) +K 22 (t(m), t(i))S~') (t('»)] dt(l)

i=l-m

where lT~'::O) and IT';:,o are the stress components at the location of the mth crack under the
applied loading condition, but in the absence of all cracks, and p~l) and p~) are the dis
tributions of unknown bridging tractions and S}i) and s~i) are the distributions of unknown
pseudo-tractions in the tangential and normal directions, respectively, corresponding to the
ith crack. Kernels K II through K 22 are deduced, from the fundamental solution, and details
on the construction of these kernels, following a similar approach, can be found in Hu et
al. (1993b). Although these kernels are lengthy, they carry distinct physical meaning. For
example, K\2(t(m), t(i») represents the normal stress lTnn (in the local coordinate system of
the mth crack) at a particular point tIm) on the presumed mth crack location due to the
normal component (in the local coordinate system of the ith crack) of the force at a
particular point t(i) on the ith crack. Other kernels may be interpreted similarly.

The bridging law equations are considered next. To this end, the crack opening
displacements in eqn (I) must be obtained for the original interacting bridged-crack
problem. We note, however, that the crack opening displacements of the mth crack can
only be induced by the pseudo-tractions, s}m) and s~m), on the mth crack (the tractions on
all other cracks do not contribute to any separations along the presumed location of mth
crack). The crack opening displacments on the mth crack can then be easily obtained in
terms of the unknown pseudo-tractions s~m) and s~m) :

m= 1, ... ,M,

m= 1, ... ,M,

(3a)

(3b)

where the kernels K 33 and K 44 also bear a distinct physical meaning. For example, K 33

represents the crack opening at a particular point tIm) on the mth crack by the application
of a unit point normal load at a point t(i) on the mth crack. Details on the kernels K 33 and
K44 are given explicitly by Tada et at. (1985).

Equations (1)-(3) now provide an integral equation representation of interactions in
a general system containing M bridged cracks. It is noted that the equilibrium equations
of the stress state at any internal point are exactly satisfied through the nature of the
built-in fundamental solutions. The traction-consistency conditions, as represented in eqns
(2a, b), and the bridging law equations, as represented in equations (la, b) and (3a, b) will
have to be satisfied approximately through a numerical solution of integral equations.

When the boundary conditions for cracks are assumed traction-free, the bridging
effects vanish and the bridged-crack system degenerates to a system of interacting traction
free cracks. The traction-consistency equations alone provide the solution to such problems
(see Hori and Nemat-Nasser, 1987 and Hu et al., 1993b, for more elaborations on the
traction-consistency equations). On the other hand, when the interacting bridged cracks
become isolated or only a single crack exists, the effects of interactions disappear and the
system reduces to the case of a single bridged crack.
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2.3. Numerical solution scheme
It can be observed that the traction-consistency eqns (2a, b) are well-behaved and that

singularity occurs only in the kernels K 33 and K 44 for crack opening equations (3a, b).
Moreover, the singularity in K 33 and K 44 is a weak one and only in a logarithmic form,
which can easily be handled by numerical integration. We adapt a Gauss quadrature
approach. After normalizing the integration interval to (-1, 1) and collocating the quad
rature points, the discretized traction-consistency equations become:

M N

s~m)(tr) - L a(i) L [K I1 (tr), t~»s~i)(t~» +K\2(tr), t~»s~i)(t~»]Wk
i= I k= Iio'm

+ (mO) (t(m» (t(m» - 0 . - 1 M' . - 1 N(1nn j -Pn j - 1- , ... , ,j- , ... , ,

M N

s~m)(tjm»_ L a(i) L [K21(tjm),t~»s~i)(t~»+K22(tjml,t~»s~)(t~»]Wk
i= I k= I
i:#m

(4a)

The crack opening equations can be regularized in the following fashion:

N

u~m)(tjm» = a<m) L K33 (tjm), tk)[S~m)(tk) -s~m)(tjm»]Wk

k= I
ko'j

N

u~m)(tr» = a(m) L K44(tr, tk)[slm) (tk) - s~m)(tt»]Wk
k=l
ko'j

where N is the number of quadrature points, tr and t~) are collocation and integration
points, and Wk is the Gauss weight in the normalized interval (-I, 1). As was observed by
Delves and Mohamed (1985), the Gauss quadrature is the most efficient and accurate
approach to the numerical solution of integration equations if logarithmic singularity is not
present. The regularization of logarithmic kernels used here ensures a level of accuracy
similar to that for regular kernels.

Several important features of the integral equation formulation may be noted here.
First, after substituting the crack opening equations into the bridging law, the governing
equations can be expressed in terms of unknown bridging tractions and pseudo-tractions
only. Second, when the cracks degenerate into conventional traction-free ones, the traction
consistency equations alone give the solution. Unlike the commonly used distribution-of
dislocation approach or other types of force or displacement formulations, the present
approach does not present any singularity, thus ensuring a high level of accuracy in
numerical solutions. Third, the problem is reduced to a number of single-crack problems.
This will facilitate the evaluation of physical quantities, such as crack-tip stress intensity
factors. Moreover, the level ofsparseness in the final coefficient matrix is enhanced, allowing
efficient solution of the system. Finally, the dimension of the final coefficient matrix is
primarily dictated by the traction-consistency equations. It is observed that the influence
of one crack on another is a strong function of the distance between them. Accordingly, by
deciding on zones of influence for individual cracks (depending upon desired accuracies),
a banded structure with reduced size may be obtained for the final coefficient matrix.
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3. LINEAR BRIDGING

The effects of linear bridging on the stress field of interacting cracks are investigated
in this section. The proposed integral equation approach can handle arbitrary orientations
and distributions of a large number of cracks. Following a treatment by Kachanov (1985),
the current approach may be formally applied to intersecting cracks. Particular focus is
placed on several aspects, such as crack interactions, crack bridging and bridging anisotropy.

Two collinear cracks of equal length, a, are considered first. It is assumed that the
surface of the crack is traction-free (or nonbridging) and is subject to a remote tension, tJo,

perpendicular to the crack-line. The stress intensity factors (SIFs) of the near tip are listed
in Table 1 for different numbers of integration points. It is seen that the current approach
can yield very accurate results using fewer quadrature points than the commonly employed
distribution-of-dislocation approach. For example, 10 integration points can provide the
normalized SIFs with an error of less than 1% for a crack-tip separation of f/2a = 0.0125.

The interactions among bridged cracks are considered next. As mentioned before,
anisotropic bridging deserves particular attention for interacting cracks with mutual orien
tations. In this context, we consider two specific types of bridging laws. First, we consider
a special type of isotropic linear bridging and assume that the bridging can only sustain
loading normal to the crack direction. The bridging law can then be expressed as:

(6a, b)

where An is the proportionality constant. Second, we consider the case of an anisotropic
linear bridging law and assume that the bridging can only sustain the loading in the y
direction of the fixed x-y coordinate system. The bridging law for a crack inclined to the
x-axis with an angle IX can be readily derived as:

Pn = An cos IX(Uncos IX + u, sin IX),

PI = An sin IX(Uncos IX +UI sin IX).

(7a)

(7b)

It is noted that the bridging law depends explicitly on the crack orientation and is thus
anisotropic.

The inset of Fig. 2(a) shows two cracks with a mutual orientation of an angle IX, subject
to a biaxial remote loading, tJxx = tJyy = tJo. The distance between crack centers is fixed at
d/a = 2.1. The variations of mode-I stress intensity factors (SIFs) of the inner tips for both
left (fixed orientation in the x-direction) and right (inclined) cracks with the angle IX are
shown in Fig. 2(a) for the case of nonbridged cracks (An = 0). The same configuration of
bridged cracks with isotropic bridging (eqns 6a, b) and anisotropic bridging (eqns 7a, b)
are also considered. The bridging strength is characterized by a dimensionless bridging
constant, c = 2(I-v)Aa/G. Figures 2(b) and 2(c) show the variation of mode-I SIFs with
the angle IX for c = 1.6 and c = 3.2, respectively. Figure 2(a) (nonbridged cracks) provides
a benchmark for an evaluation of the effectiveness of crack bridging. Comparisons of Figs
2(b) and 2(c) with Fig. 2(a) reveal that bridging can reduce the SIFs significantly. A large
value of c is desirable to increase retardation of crack-tip stresses. This is certainly the case
for long cracks (large values of a) and bridging agents with large values of A. It is observed

Table I. Inner-tip SIFs for two collinear cracks of equal length (I = tip
separation/crack length)

Current/dislocation

Exact N=IO N= 15 N=25

0.0125 2.782 2.755/2.512 2.775/2.705 2.782/2.776
0.0250 2.215 2.207/2.138 2.213/2.201 2.215/2.214
0.0500 1.795 I.793/1.780 1.795/1.794 1.795/ I.795
0.1000 1.491 1.491/1.490 1.491/1.491 1.491/1.491
0.2500 1.229 1.229/1.229 1.229/1.229 1.229/1.229



Interacting bridged-crack systems 605

'"

tip A .
tipB _

28 ,28~
11::"===="::lI~~ a

I.. dB ..I

80

.....

6040

(a)
2

1.9

1.8

1.7

~ 1.6

0
b..... 1.5
':Z

1.4

1.3

1.2

1.1

0 20

(b)
1.05 .,..------------------------------,

80

"-""-"-"-"-"-"

60

.................................

40

~~

~~~ --- -------------------

20

tip A (isotropic bridging) . _ •. -" _ •• -

tip A (anisotropic bridging) ...••.•.••••••••

lip B (isotropic bridging) - - - - - - - -

tip B (ansolropic bridging)

0.96

0.9

~ 0.85
0

~ 0.8
':Z

0.75

0.7

0.65

0.6

0.55

0.5

0

a

Fig. 2. Variation of mode-I SIFs with orientation for biaxial remote loading, (Txx = (Tvv = (To, and
diu = 2.1: (a) c = 0: (b) c = 1.6; (c) c = 3.2. ..

from Figs 2(b) and 2(c) that the SIFs at tip A do not indicate much difference between
isotropic bridging and anisotropic bridging, suggesting that crack-tip behavior can be
altered only to a limited extent by changing the bridging law of a neighboring crack. The
difference in SIFs between isotropic and anisotropic bridging, however, is pronounced for
crack tip B. For example, the normalized SIFs at C( = 45° and c = 1.6 and 0.57 and
0.80 for isotropic and anisotropic bridging, respectively. It is also noted that anisotropy
complicates the variation of SIF for crack tip B. The tip-B SIF reaches a local maximum
first at a small value of angle c(, then it drops to a minimum value before it goes up again.
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Obviously, the existence of the local maximum SIF at small « is due to crack interactions,
and the existence of the minimum value is largely due to the effect of anisotropy.

The effects of anisotropy, as shown in Figs 2(b) and 2(c) are significant for crack tip
B for the case of biaxial remote loading (O'xx := (Tyy := (To). However, this is not the case for
uniaxial remote loading (l1yy = Go). Figure 3 considers the same configuration as in Fig.
2(b) (c = 1.6); but a uniaxial remote loading (C1yy = 0'0) is applied. It is seen that isotropic
and anisotropic bridging produce almost identical SIFs for both crack tips A and B. We
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Fig. 3. Variation of mode-I SIFs with orientation for uniaxial remote loading, IJyy = Go, dla == 2.l,
and c == 1.6.
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can conclude that the effect of bridging anisotropy on crack-tip stress can be large or small,
depending on the loading conditions.

Figures 4(a) and 4(b) consider three parallel, offsetting cracks, one being stepped up
from the other. The system is subject to a remote tension, 0'0, in the direction perpendicular
to the crack. As observed by Beyerde et af. (1992), the stepped cracks occur in unidirectional
fiber-reinforced composites due to a damage redistribution process ofmultiple cracking. In
such cases, the effect of bridging forces must be considered. As a first approximation to the
analysis of multiple cracking of a unidirectional fiber-reinforced composite, we employ the

(a)

A I'"
2a

I- ='11

I...
d

2a

~~
gIld ..

..I

2.2

2

1.8

1.6

~ 1.4
0

~
:Z' 1.2

,' .

e-o.O

e-o.16

". ".
'"

'"

'"
~ ...... ....... . .................

0.8

0.6 --- ------- --------------------------
0.4 +--.-~::;==::;:::=r:=:;=:::::;:=::;===;:=;== .......- ........,.-.,...~

o 0.4 0.8 1.2 1.6 2 2.4

h

---------------------------------0.05

(b)
0.3

!":
2a

0.25

~~
: : e-o.O ...................

0.2 ! \ c>O.16 ._------
A ,- gIl c>O.32

0.15 2a

~ \1'" 110.1
d ..

tf' ..I.....
::: 0.05 d:.::

0

-0.1 ....................
-0.15

..................-" ..........................................

-0.2 +--r-.....,r--~--r-..,..--r--r--~--r-,...-,--r---,---r--;

o 0.4 0.8 1.2 1.6 2 2.4 2.8

h

Fig. 4. Variation of the inner-tip SIFs of the central crack with step for three parallel, offsetting,
interacting bridged cracks; a remote tension. 0'0. in the direction perpendicular to the cracks is

applied to the system and dja = 2.1: (a) mode-I; (b) mode-II.



608 K. X. Hu et al.

bridging law in eqn (6). Due to interactions between the cracks, the mode-I [Fig. 4(a)] and
mode-II [Fig. 4(b)] SIFs of the central crack vary in a complex fashion with the step height.
It is also noted that there is a considerable level of mode-II deformation, which is solely
induced by the interactions in this case. Bridging consistently retards the strength of the
crack-tip stress field for both mode-I and mode-II deformations.

4. NONLINEAR BRIDGING FOR FIBER PULL-OUTS

Shaw and Evans (1993) studied the nucleation of a microcrack in ceramics across a
metal layer in metal/ceraminc laminates. Ceramics are brittle and vulnerable to micro
cracking, while the plastic flow in metals dissipates the stress concentration in metal layers
to avoid microstructural damage and to provide the toughness for a composite. As shown
in Fig. 5, a pre-existing crack in a metal/ceramic laminate may result in stress concentration
ahead of the crack tip, thereby nucleating a microcrack along the crack plane in the next
ceramic layer. As observed by Dalgleish et al. (1989) and Cao and Evans (1991), the
renucleated crack may penetrate the ceramic layer and be arrested by two neighboring
metal layers. In such laminates, the metal layers, particularly the ones near the dominant
crack tip, provide the bridging forces to retard crack extension. As an approximation to
this problem, we consider a discrete bridging model over a single metal layer right behind
the crack tip [see Fig. 5(a)]. Following the approach of Marshall et al. (1985) and its
modification by Hutchinson and Jensen (1990), a bridging law can be stated as:

Pn = A.';;;". PI = 0 (8)

where A. is a material constant depending on the sizes, the moduli, and the interfacial
frictional properties of the metal and ceramics layers. It should be noted that the bridging
law given in eqn (8) was derived for fibers frictionally bonded to the matrix. As noted by
the work cited above, it can be equally applied to a metal/ceramic layer system. When
broken layers dominate the process, however, softening will have to be accounted for and
the bridging law should be modified accordingly.

After crack renucleation, two modes of damage evolution are possible: (i) multiple
cracking in the same ceramic layer, or (ii) extension of the dominant crack through the metal
interface into the next ceramic layer. Shaw et al. (1993) observed that, subsequent to crack
renucleation, relatively thick ceramic layers lead to damage in the form of continuous
microcracking in the adjacent ceramic layers (i.e. single-crack extension) while thin ceramic
layers cause the formation of multiple parallel stacked cracks with a zone near the dominant
crack (i.e. multiple cracking). The formation ofa multiple-cracking zone distributes damage
and significantly enhances the composite toughness as compared to the extension of a
dominant crack (Deve and Maloney, 1991; Deve et al., 1992; Hu and Chandra, 1993).

The problem here is to determine quantitatively the critical thickness of ceramic layers
(or the ratio of ceramic-to-metal thickness), below which multiple cracking prevails over
single-crack extension in metal/ceramic laminates. For the configuration shown in Fig. 5(a),
the maximum stress in the ceramic layer occurs somewhere (point B) above the crack plane,
say, the step height he. This maximum stress, U ma" is compared to the stress, Uo, at point A
on the crack plane in the next unbroken layer. If O"max is larger than 0"0 and reaches the level
of the ceramic breakage stress, O"n the next microcrack will be renucleated at the site of
O"ma" i.e., somewhere above the dominant crack in the same ceramic layer. Therefore,
multiple cracking dictates the process. If O"max is less than 0"0, the next microcrack will be
nucleated in the next unbroken ceramic layer along the crack plane such that single-crack
extension is prevalent. Based on this reasoning and the bridging law given in eqn (8), the
critical ratio of ceramic-to-metal thickness can be obtained, and we can also predict the site
where the next microcrack will nucleate for the case ofmultiple cracking. Figure 5(b) shows
the critical ratio with a dimensionless constant I = [tmA. 2 (I-v)]/GO"c. Figure 5(c) gives the
prediction of the site of the next microcrack nucleation in the case of multiple cracking. It
is noted that the critical ratio and the nucleation position can be characterized through only



Interacting bridged-crack systems 609

a single configuration constant if a/tm is fixed. In the current analysis, the calculation of
O"max is made along the centerline of the ceramic layer. Other types of approximations might
be performed; for example, one may average the stress over the ceramic layer at different
attitudes to obtain O"max'

5. DISCUSSION AND CONCLUSIONS

The problem of interacting bridged cracks was considered in this paper. The analysis
is based on a superposition technique that allows the decomposition of a multiple bridged
crack system into a number of sub-problems, each involving only a single crack. The
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Fig. 5. A metal/laminate with a bridged crack: (a) schematic diagram; (b) variation of the critical
ratio of the ceramic-to-metallayer thickness with the dimensionless configuration constant I; (c)
variation of the predicted step height, he> at which a microcrack will be nucleated, with the

dimensionless configuration constant X.
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superposition spawns the traction-consistency equations in terms of bridging tractions and
pseudo-tractions, which are solved as primary unknowns. The secondary unknowns, such
as stress and strain fields, can be constructed through direct integration. The current
approach is capable of handling multiple interacting crack systems with a general form of
the bridging law, linear or nonlinear, isotropic or anisotropic. Anisotropy in the bridging
law, which becomes an important issue for multiple bridged-crack systems, is investigated
to show that the change in a crack bridging law from isotropic to anisotropic can modify
the tip behavior of the crack itself to an extent, depending on the loading conditions.
Nevertheless, a crack-tip stress field can be altered, only to a limited extent, by changing a
bridging law in a neighboring crack. Bridging effects and interaction effects on stress
amplification and retardation were also examined and revealed several interesting aspects.
For nonlinear bridging, a case of fiber pull-out in metal/ceramic laminates was studied to
establish the critical ratio of fiber-to-matrix thickness that leads to the arrestation of a
single-crack extension and transfers it to multiple cracking. The prediction was also made
for the position ofthe crack nucleation site in the case ofmultiple cracking. These predictions
were characterized through a single configuration parameter.

In composite materials, the defects always coexist with reinforcements. Modeling of
interactions of cracks with various forms of bridging can provide bounding estimates, such
as maximum available retardation, for microstructure design. In applications to real
life structures, one must incorporate general loading situations, finite and often complex
geometries of particular components, as well as a detailed representation of interacting
microstructures and the associated damage evolution. And therein lies the fundamental
difficulty in the analysis of these problems. Typically, the microstructures and their spacings
are of the order of a few micrometers, while the overall dimensions of a component may
range from a few centimeters to even a meter. Thus, a computational scheme is required,
simultaneously, to provide a detailed representation of the underlying mechanics at two
widely different scales: a local micro-scale with interacting microstructures, and a global
macro-scale representing the real structure's configuration. The current analysis is capable
of yielding a fundamental solution that accounts for the microstructural interactions. This
fundamental solution can be augmented through the boundary integral equation approach
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to provide a solution to the problem of real-life structures. Also, the framework of large
scale bridging was recently discussed by Bao and Suo (1992). Work on large-scale bridging
and the development of computational methods with emphasis on the connections among
microstructural interactions, finite geometries, and realistic boundary conditions for real
life structures will constitute a part of our future endeavors.
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